Lewknor Church of England Primary School

Calculation Policy

Introduction:

Children are introduced to the processes of calculation through practical, oral and mental activities. As they begin to understand the underlying ideas, they develop ways of recording to support their thinking and calculation methods, so that they develop both conceptual understanding and fluency in the fundamentals of mathematics. Whilst interpreting signs and symbols involved with calculation, orally in the first instance, children use models and images to support their mental and written methods of calculation. As children's mental methods are strengthened and refined they begin to work more efficiently, which will support them with using succinct written calculation strategies as they are developed.

The ability to calculate mentally forms the basis of all methods of calculation and has to be maintained and refined. A good knowledge of numbers or a 'feel' for numbers is the product of structured practice through progression in relevant practical maths experiences and visual representations.

By the end of Year 6, children will be equipped with efficient mental and written calculation methods, which they use with fluency. Decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. At whatever stage in their learning, and whatever method is being used, children's strategies must still be underpinned by a secure understanding and knowledge of number facts that can be recalled fluently.

The overall aims are that when children leave primary school they:

- Are able to recall number facts with fluency, having developed conceptual understanding through being able to visualise key ideas - such as those related to place value - through experience with practical equipment and visual representations;
- Make use of diagrams and informal notes to help record steps and part answers when using mental methods that generate more information than can be kept in their heads;
- Have an efficient, reliable, written method of calculation for each number operation that they can apply with confidence when undertaking calculations that they cannot carry out mentally;
- Are able to make connections between all four number operations, understanding how they relate to one another, as well as how the rules and laws of arithmetic can be applied.

	multiples of two, five and ten.	4 add 1 is 5 5 subtract 4 leaves 1	i.e. Numicon, tens frames, abaci, etc. \square	counters/objects along the number track. This is a precursor to use of a fully numbered number-line.	'one more than four is five'
Stage 2:	Continue practicing above skills. Count in steps of 2,3 and 5 forwards and backwards to and from zero. Count in tens from any number - link to coins in a piggy bank as well as a number square.	Reorder numbers when adding, i.e. start with largest number, find bonds, etc. Add doubles and derive near doubles. Round numbers to the nearest 10.	Recall addition facts for all numbers to 20.	Counting on from any number: - Children begin to use numbered lines to support their own calculations, initially counting in ones before beginning to work more efficiently. Counting on from the largest number: - Children reorder calculations to start with the largest number.	Number line with all numbers labelled 12 $18+5$...to... Use of questions such as: 'How might I rearrange these to find the total?'

Stage 3:	Continue practicing above skills. Count from 0 in multiples of 4, 8, 50 and 100. Count on by 10 or 100 from any two digit number. Link to counting stick: counting forwards and backwards flexibly. Count up and down in tenths linking to visual image.	Partitioning by bridging through 10 and multiples of 10 when adding. Adjusting when adding 11 or 9 to a number. Relating inverse number operations using structured apparatus to explore and understand that subtraction undoes addition.	Connect pairs totalling ten to pairs of multiples of 10 totalling 100. Use 10ps in tens frame. Recall pairs of two-digit numbers with a total of 100 , i.e. $32+$? = 100.	Expanded horizontal addition: - Add numbers using structured apparatus to support understanding of place value. - Make connections between partitioning both numbers using structured apparatus and partition the second number only using a number line.	Add... (1) B B ...and... \square (1) \square \square \square \square B By partitioning and recombining $\begin{gathered} 30+40=70 \\ 5+7=12 \\ 70+12=82 \end{gathered}$ $35+47$
Stage 4:	Continue practicing previous skills. Count forwards and backwards from 0 in multiples of 6 , 7, 9, 25 and 1000 using counting sticks, number lines,	Bridging through 60 for time, i.e. 70 minutes $=1$ hour and 10 minutes. Rounding any number to the nearest 10, 100 or 1000. Rounding numbers with one decimal	As above. Use known facts and place value to derive new ones, i.e. 'If I know $8+3$ $=11, \mathrm{I}$ also know 0.8 + $0.3=1.1$ and $8 / 100+$ $3 / 100=$	Expanded horizontal method, leading to columnar addition: - Written recording should follow teacher modelling around the size of numbers and place value using a variety of concrete materials, e.g. straws, Numicon, Dienes and place-value cards. - Teachers model how numbers can be partitioned into tens and ones, as well as in different ways, $\begin{array}{r} \text { e.g. } 20+5 \\ 10+15 \\ \hline \end{array}$	It is crucial that empty number lines are kept as well as using more formal written calculation methods.

	forwards and backwards in simple fractions. Count forward and backwards in appropriate decimals and percentages.	calculations, i.e. $1.7+2.8$ $+0.3=1.7+$ $0.3+2.8$ Compensating - i.e. 405 + $399 \rightarrow$ add 400 and then subtract 1.	percentages and decimals Doubles and halves of decimals, i.e. half of 5.6, double 3.4. Sums and differences of decimals, i.e. $6.5+$ 2.7	recombining numbers. Teachers also model the language of: 'Four tens add seven tens total eleven tens or 110.' - Teachers similarly advance to model the addition of two 3-digit numbers with the expectation that as children's knowledge of place value is secured, they become ready to approach a formal compact method.	$\begin{array}{r} 47 \\ +\quad 76 \\ \hline 13 \\ \hline 110 \\ \hline 123 \end{array}$
Stage 6:	Continue to practice previous skills. Count forwards and backwards in simple fractions, decimals and percentages.	Bridging through decimals, i.e. $0.8+0.35=$ $0.8+0.2+$ 0.15 using empty number lines. Partitioning using near doubles, i.e. $\begin{aligned} & 2.5+2.6=5 \\ & +0.1 \end{aligned}$ Reorder decimals, i.e. $\begin{aligned} & 4.7+5.6- \\ & 0.7 \\ & \ldots . . \mathrm{as} \ldots 4.7- \\ & 0.7+5.6=4 \\ & +5.6 . \end{aligned}$	Ensure all children are confident recalling basic facts to 20 and deriving facts using place value. Make links between decimals, fractions and percentages.	Columnar addition (formal written method): - The concept of exchange is introduced through continued use of practical equipment (manipulatives). - Teachers model: 1. "I have two tens and five ones, which need adding to four tens and seven ones." 2. "I add five ones to seven ones, which gives me twelve ones." 3. "I exchange ten of my twelve ones for a ten counter." 4. "I add my three tens and four tens to make seven tens." "Altogether, I have seven tens and two ones." - Teachers similarly advance to model the addition of two 3-digit numbers, e.g.	Pupils to be encouraged to consider mental strategies first. Formal columnar:

	Counting	Mental strategies	Rapid Recall	Written calculation a conceptual understan	nd appropriate models and images to support ding
Stage 1:	Count in ones to and across 100, forwards and backwards starting from 0,1 and other numbers. Count in multiples of two, five and ten.	Pupils use apparatus to explore addition as the inverse of subtraction: 'four add one is five.' 'five subtract four leaves one'	Rapid recall of subtraction facts for numbers up to 10. Use structured apparatus, i.e. Numicon, tens frames, abaci etc. \square	Subtraction as taking away from a group: - Children develop a mental picture of the number system for use with calculation. A range of key models and images support this, alongside practical equipment. - Teachers model use of number tracks to count back or remove counters/objects from the number track or set. This is a precursor to use of a fully numbered number-line.	(1)2345 678910 - - - \ll $5-2=3$ ‘six take away two leaves four' 'one less than six is five'
$\begin{array}{\|l\|} \hline \text { Stage } \\ \text { 2: } \end{array}$	Continue practicing above skills. Count in	Bridging through two digit numbers, i.e. $24-19=19+$ $1+4$ using number	Recall subtraction (and addition)	Subtracting by counting back and on: - Children begin	Number line with all numbers labelled

	steps of 2, 3 and 5, forwards and backwards to and from zero. Count in tens from any number link to coins in a piggy bank as well as a number square.	lines. Subtracting 11 by subtracting 10 and then 1 more. Move to subtracting 9 by subtracting 10 and adding 1 using apparatus.	facts for all numbers to 20.	to use numbered lines to support their own calculations, initially counting back in ones before beginning to work more efficiently.	$13-5=8$ $13-5=8$
Stage 3:	Continue practicing above skills. Count from 0 in multiples of $4,8,50$ and 100 . Count on and back by 10 or 100 from any two digit number. Link to counting stick counting forwards and backwards flexibly. Count up and down in tenths -	Partitioning by bridging through 10 and multiples of 10 when subtracting. Continue to practice adjusting when subtracting 11 or 9 from a number. Relating inverse number operations use structured apparatus to explore and understand that subtraction undoes addition.	Connect subtractions from ten to subtractions from multiples of 10 totalling 100. Use 10ps in tens frame. Subtract two digit numbers from 100 i.e. $?=100-78$	Finding the difference: - Teachers model how to find the difference when two numbers are relatively 'close together.' - Initially children compare two sets before moving on to a number line comparison. - Pupils are taught to choose whether to count on or back depending on which is more efficient.	Comparing two sets: comparison or difference. Finding the difference on a number line. Note: Finding the difference is often the most efficient way of solving a subtraction problem, $\text { e.g. } 61-59$ $2,003-1,997$

	linking to visual image.				
Stage 4:	Continue practicing of previous skills. Count forwards and backwards from 0 in multiples of 6, 7, 9, 25 and 1000 using counting sticks, number lines, number squares, etc. Count up and down in tenths, hundredths and simple fractions using models and images, i.e. Dienes equipment, counting stick, ITPs.	Bridging through 60 for time, i.e. 70 minutes $=1$ hour and 10 minutes Rounding any number to the nearest 10, 100 or 1000. Rounding numbers with one decimal place to nearest whole number. Explore inverse as a way to derive new facts and to check accuracy of answers.	As above. Use known facts and place value to derive new ones, i.e. 'If I know 11-3 $=8$, I also know 1.1 $0.3=0.8$ and 8/100 $3 / 100=$ 5/100.' Sums and differences of pairs of multiples of 10,100 or 1000. Subtraction of fractions totalling 1 , i.e. $1-0.3$ $=0.7$	Subtracting TU - U and TU - TU:	Use empty number lines to find the difference by bridging through multiples of ten. Subtract by starting with the first number and partitioning the second, i.e. 74-27 $\begin{aligned} & 74-20=54 \\ & 54-4=50 \\ & 50-3=47 \end{aligned}$
Stage 5:	Count forwards and backwards in steps of	Use apparatus and knowledge of place value to subtract decimals, i.e. 3.8 -	Continue to practice previous stage and	First stage of column method, including expanded method:	Children should continue to use empty number lines and use more formal written methods when numbers become too big or complex.

powers of 10 for any given number up to one million. Continue to count forwards and backwards in simple fractions. Count forward and backwards in appropriate decimals and percentages.	$2.5=1.3$ Reorder increasingly complex calculations, i.e. 1.7 $\begin{aligned} & -5-0.7=1.7- \\ & 0.7-5 . \end{aligned}$ Compensating - i.e. 405-399 \rightarrow subtract 400 and then add 1.	make links between known facts and addition pairs for fractions, percentages and decimals. Doubles and halves of decimals, i.e. half of 5.6, double 3.4. Sums and differences of decimals, i.e. $6.5+$ 2.7	- Written recording should follow teacher modelling around the size of numbers and place value using a variety of concrete materials, e.g. straws, Numicon, Dienes and place-value cards.	Counting back in tens and ones to solve an addition calculation: $47-23=24$ Counting back more efficiently: $47-23=24$

Multiplication:

			reference to structured apparatus.		
Stage 2:	Count forwards and backwards in 2s, 3s, 5 s and 10 s from zero.	Begin to understand and use inverse number operations: Stories are used alongside a triad to help children understand links between number operations, e.g. "There are five pencils in two packs, which means that there are ten pencils altogether."	Derive/recall doubles up to ten and derive/recall halves up to twenty. Recall odd and even numbers to 20 in reference to structured apparatus. Recall \& use multiplication facts for the 2X,5X and 10X-tables.	Understanding multiplication as repeated addition: - Investigate multiplication as repeated addition, so that the law of cummutativity is understood. - Whilst arrays are also modelled explicitly at this stage, it is important to note that they will continue to be a key model at later stages, alongside more formal methods of calculation.	Arrays: Number lines: $6 \times 4=24$ So: 'Six taken four times"

Division:

	Counting	Mental strategies	Rapid recall	Written calculation and appropriate models and images to support conceptual understanding	
Stage 1:	Count forwards and backwards in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s	Doubling up to six and then ten whilst using related models and images.	Derive/recall doubles up to five and derive/recall halves up to ten. Recall odd and even numbers to 10 in reference to structured apparatus.	Developing early conceptual understanding of division as grouping and sharing:	Use objects, pictorial representations and arrays to show the concept of division as grouping and sharing. "Two children share six pencils between them" "Six children are asked to get into three equal groups" \square \square
$\begin{aligned} & \text { Stage } \\ & \text { 2: } \end{aligned}$	Count forwards and backwards in 2s, 3s, 5 s and 10 s from zero.	Begin to understand and use inverse number operations.	Derive/recall doubles up to ten and derive/recall halves up to twenty. Recall odd and even numbers to	Understanding division as repeated subtraction: - Investigate division as repeated subtraction. - Through teacher	Number lines and arrays: $12 \div 3=4$

		Stories are used alongside a triad to help children understand links between number operations, e.g. "15 children are asked to get into three groups and find out that there are five people in each group."	20 in reference to structured apparatus. Recall and use multiplication facts for the 2X, 5X and 10X-tables.	modelling, children need to know that division is not commutative.	$15 \div 5=3$
$\begin{aligned} & \text { Stage } \\ & \text { 3: } \end{aligned}$	Counting forwards and backwards in 2s, 3s, $4 \mathrm{~s}, 5 \mathrm{~s}, 8 \mathrm{~s}$ and 10 s from zero.	Use doubling to make connections between the 2 X , $4 X$ and $8 X$-tables. Understand that multiplication can be undertaken by partitioning numbers, e.g. $12 \times 4=10 \mathrm{X}$ $4+2 \times 4$ Introduce the structure of scaling: e.g. Find a ribbon that is 4 times as long as the blue ribbon.	Recall odd and even numbers to 100 in reference to structured apparatus. Recall \& use multiplication facts for the 2X, 3X, 4X, 5X, 8X and 10X tables.	Dividing a 2-digit by 1-digit number, representing this efficiently on a number line:	Children use an empty number line to chunk efficiently. $96 \div 6=16$
$\begin{aligned} & \text { Stage } \\ & \text { 4: } \end{aligned}$	Counting forwards and backwards in $2 \mathrm{~s}, 3 \mathrm{~s}$, $4 \mathrm{~s}, 5 \mathrm{~s}, 7 \mathrm{~s}$, $8 \mathrm{~s}, 10 \mathrm{~s}, 25 \mathrm{~s}$ and 1000s from zero.	Derive factor pairs of numbers using models and images. Know what happens when a number is multiplied by zero or one. Use reordering to multiply	Recall \& use multiplication facts for all times-tables up to 12 X 12.	Dividing a 3/2digit by 1-digit number, representing this efficiently on a number line, also in relation to long division: - At this stage,	Children use an empty number line to chunk efficiently. $\begin{aligned} 224 \div 8 & =28 \\ & 8 \times 8=64 \quad 20 \times 8=160 \end{aligned}$

		three numbers.		no remainders are present unless in a practical context.	$\begin{array}{r}28 \\ \hline 224 \\ -160 \\ \hline 64 \\ -\frac{64}{0} \\ \hline\end{array}(8 \times 20)$ $\begin{array}{r}88 \\ 8\end{array}$ 224
Stage 5:	Counting forwards and backwards in $2 \mathrm{~s}, 3 \mathrm{~s}$, 4s, 5s, 6s, $7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}$, 10 s , 25 s and 1000s from zero.	Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.	Recall \& use multiplication facts for all times-tables up to 12 X 12.	Dividing a 4/3/2digit by 1-digit number, in relation to long division: - By this stage, there is a statutory requirement that children can use a formal written calculation method, such as long division. - Short division may begin to be taught alongside long division, but still with use of visual representations	As schools have autonomy to decide children's progression in learning between long and short division in Years 5 and 6, the maths team suggest beginning with long division. Remainders should be interpreted in the following ways when long division is used: - as whole numbers - as fractions - through rounding in an appropriate way to the context Long division: $\begin{aligned} & 415 \div 9=46 \text { and } 1 / 9 \\ & 9 \begin{array}{r} 46 \text { and } 1 / 9 \\ -\frac{360}{55} \\ -\frac{54}{1} \\ (9 \times 40) \\ (9 \times 6) \end{array} \end{aligned}$
Stage 6:	Consolidate all previous counting, including forwards	Perform mental calculations, including with mixed numbers and different number operations.	Recall \& use multiplication facts for all times-tables up to 12 X	Dividing a 4/3/2digit by 2/1-digit number, in relation to long and then short	As schools have autonomy to decide children's progression in learning between long and short division in Years 5 and 6, the maths team suggest moving from long division to short division. Remainders should be interpreted in the following

